Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 1136
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     


 
 Table of Contents  
SYMPOSIUM
Year : 2014  |  Volume : 4  |  Issue : 1  |  Page : 31-34  

Recent advances in the management of Plasmodium knowlesi infection


Department of Medicine, Jawaharlal Institute of Post Graduate Medical Education and Research, Puducherry, India

Date of Acceptance08-Feb-2014
Date of Web Publication20-Mar-2014

Correspondence Address:
T K Dutta
Senior Professor, Department of General Medicine, Jawaharlal Institute of Post Graduate Medical Education and Research, Puducherry 605 006
India
Login to access the Email id


DOI: 10.4103/2229-5070.129158

PMID: 24754024

Rights and Permissions
   Abstract 

Plasmodium knowlesi (P. knowlesi) has been detected to be the fifth malarial parasite that can cause malaria in human beings. The parasite is known to commonly infect macaque monkeys. The infection is highly prevalent in South-East Asia. It has morphologic similarities to Plasmodium malariae and Plasmodium falciparum. P. knowlesi is known to replicate every 24 h in the human host and hence, causes "quotidian malaria." It causes a wide spectrum of clinical manifestations and sometimes can cause fatal illness. Chloroquine is effective in the treatment of uncomplicated P. knowlesi infection. Severe and complicated P. knowlesi malaria can be managed with artemisinin combination therapy.

Keywords: Artemisinin combination therapy, Plasmodium knowlesi, quotidian malaria


How to cite this article:
Vadivelan M, Dutta T K. Recent advances in the management of Plasmodium knowlesi infection. Trop Parasitol 2014;4:31-4

How to cite this URL:
Vadivelan M, Dutta T K. Recent advances in the management of Plasmodium knowlesi infection. Trop Parasitol [serial online] 2014 [cited 2019 Oct 19];4:31-4. Available from: http://www.tropicalparasitology.org/text.asp?2014/4/1/31/129158


   Introduction Top


Plasmodium knowlesi is a malaria parasite that is found in macaque monkeys. It has been recognized as the fifth Plasmodium species that can cause malaria in human beings. P. knowlesi malaria is primarily a zoonotic infection that is commonly seen in South-East Asia. The parasite is transmitted by the bite of an Anopheles mosquito.

Morphologically, P. knowlesi is similar to the human malaria parasite, Plasmodium malariae. Hence, human infections could not be diagnosed until molecular detection methods for diagnosis were made available. P. knowlesi infections cause a spectrum of illness that can be potentially fatal. However, if they are detected at an early stage, they can be treated easily.


   Life Cycle Top


P. knowlesi has a replication period of 24 h in human erythrocytes and hence may be designated quotidian malaria. [1] This may result in high parasite load in a short period of time. It passes through the stages of merozoite followed by trophozoite and schizont formation. The early trophozoites of P. knowlesi are morphologically similar to Plasmodium falciparum and the other stages resemble those of P. malariae. [2]

Relapses are not seen in P. knowlesi infection due to the absence of hypnozoites in its exoerythrocytic stage. [3],[4]


   Epidemiology Top


P. knowlesi is a parasite of long-tailed and pig-tailed macaques, but human beings entering forests to work are liable to acquire the infection. [5],[6] This parasite is commonly found in countries of South-East Asia such as Malaysia, Thailand, Myanmar and their neighboring countries. [7] Mosquitoes are responsible for the transmission of P. knowlesi infection. They are mainly present in the forest areas.

There has been no report of P. knowlesi infection from India.


   Vectors Top


The vectors belong to the genus Anopheles, subgenus Cellia, series Neomyzomyia and group Leucosphyrus. Mosquitoes of this group are present in the forests of South-East Asia. Human beings are exposed to these vectors as a result of deforestation.

Anopheles latens and Anopheles cracens are the important vectors that transmit P. knowlesi to humans. [8],[9]


   Modes of Transmission Top


There are two modes of transmission of the parasite to humans:

1. From an infected monkey to human

2. From an infected human to another human.


   Clinical Features Top


P. knowlesi infection usually presents with non-specific symptoms. Males in the age group of 30-60 years are commonly affected. The duration of illness is 3-7 days. The most common symptom is fever with chills and rigors. Fever can be associated with headache, myalgia, malaise and anorexia.

Cough, abdominal pain, nausea, vomiting and diarrhea are the other presenting symptoms of the disease. Symptoms start approximately 11 days after bite by an infected mosquito. [10]

P. knowlesi infection should be suspected in patients with these symptoms in patients engaged in farming activities or working in or near forests in an endemic region. In case of patients residing in non-endemic areas, history of travel to endemic areas should be carefully elicited to ascertain the diagnosis.

High body temperature, tachycardia and tachypnea are the common clinical signs of illness. Hepatosplenomegaly can be present in 15-25% of patients.

The clinical manifestations of severe illness can be summarized as below:

  1. Respiratory distress: This is characterized by an increase in the respiratory rate, non-specific auscultatory findings, drop in oxygen saturation detected by pulse oximetry and radiographic changes of non-cardiogenic pulmonary edema. Respiratory distress can be due to pulmonary edema or metabolic acidosis
  2. Jaundice: There is a rise in serum bilirubin along with liver enzymes due to derangement in liver function
  3. Renal failure: Alteration in kidney function is manifested as oliguria with a rise in serum creatinine level despite appropriate fluid resuscitation
  4. Hypotension: Defined as a systolic blood pressure of 90 mm Hg or below despite adequate fluid resuscitation
  5. Hypoglycemia: Defined as random blood glucose of 40 mg/dl or less.


Thrombocytopenia is a common hematological finding in patients with P. knowlesi infection. However, bleeding manifestations or clinically evident coagulopathy is not found. Due to the non-sequestering nature of P. knowlesi, neurologic findings (common in cerebral malaria due to P. falciparum) such as unarousable coma, seizures and encephalopathy are not seen in the course of the illness.

There are no presenting symptoms or signs that can distinguish P. knowlesi malaria from falciparum or vivax malaria. Though P. knowlesi infection is known to have a benign clinical course, life-threatening complications or death may occur in a minority of cases. The prevalence of complications was 10% and mortality rate due to severe P. knowlesi infection was found to be 2% in one series. [11]


   Management Top


Peripheral blood smear examination of patients with P. knowlesi infection can be misdiagnosed as P. malariae due to the morphologic similarities between the 2 Plasmodium species. Hence, P. knowlesi infection is more likely in a patient with an unusual clinical presentation of P. malariae or in a patient with severe malaria who has morphologically appearing P. malariae on the blood smear.

Molecular detection methods like polymerase chain reaction (PCR) are useful in the confirmation of diagnosis of P. knowlesi infection and in detection of mixed infection. The disadvantage of PCR is that it cannot be used as a rapid diagnostic technique. Furthermore, availability of PCR is limited in many hospitals due to its high cost.

Treatment of uncomplicated P. knowlesi infection

Uncomplicated P. knowlesi infection has been found to be sensitive to conventional antimalarial drugs such as chloroquine, quinine and mefloquine. Primaquine is required for gametocyte clearance. It is given in the dose of 15 mg for 2 days. Chloroquine given in conventional doses (10 mg base/kg body weight, followed by 5 mg base/kg at 6, 24 and 48 h-total dose 25 mg base/kg) has a rapid parasite clearance when compared to vivax malaria as reported from several studies. [12],[13],[14],[15],[16]

Chloroquine is a cheap, effective and well-tolerated antimalarial drug and it is useful in the treatment of uncomplicated P. knowlesi infection in humans.

Treatment of severe P. knowlesi infection

Severe and complicated P. knowlesi infection requires treatment with intravenous quinine. Quinine is given as a loading dose of 20 mg/kg in 10% dextrose solution, which is followed by 10 mg/kg dose 8 hourly for a period of 7 days. The side-effects of quinine are hypoglycemia and cardiac arrhythmias (in patients with a history of cardiac illness).

There are limited clinical studies on the use of parenteral artemisinin derivatives for the treatment of severe P. knowlesi infection in humans. However, a study in rhesus monkeys has found artemisinin to be an effective antimalarial drug.

Artemisinin derivatives have been found to have excellent efficacy against human P. knowlesi strain and it correlates clinically in patients treated with Artesunate, where mortality was not seen after treatment. [17]

A study by William et al. carried out a retrospective analysis of P. knowlesi malaria cases in Sabah, Malaysia and reported that artemether-lumefantrine combination therapy was successful in treating patients. They also noted that intravenous artesunate was effective in treating severe P. knowlesi infection. [18]

Due to a zoonotic mode of transmission of P. knowlesi to humans, there is less likelihood of drug resistance by the parasite. However, P. knowlesi laboratory isolates showed less sensitivity to mefloquine when compared to that of P. falciparum.

This could possibly be due to innate tolerance of P. knowlesi to mefloquine. Hence, there is a strong possibility of treatment failure if mefloquine is used alone or as combination therapy. This has been supported by reports of treatment failure with mefloquine in rhesus monkeys and humans infected with P. knowlesi. [19],[20]

Larger clinical studies are needed before mefloquine can be used for the treatment or prophylaxis of P. knowlesi malaria.


   Conclusion Top


P. knowlesi infection, though less commonly prevalent, can be responsible for severe illness. Chloroquine is an effective antimalarial drug that can be used safely and effectively in uncomplicated P. knowlesi infection. The parasite is highly sensitive to artemisinin group of drugs and they are helpful in the management of severe and complicated illness. Due to the potential resistance of the parasite to mefloquine, it is not useful in the management of P. knowlesi infection.

 
   References Top

1.Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A, Ratnam S, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 2008;46:165-71.  Back to cited text no. 1
    
2.Lee KS, Cox-Singh J, Singh B. Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malar J 2009;8:73.  Back to cited text no. 2
    
3.Cogswell FB. The hypnozoite and relapse in primate malaria. Clin Microbiol Rev 1992;5:26-35.  Back to cited text no. 3
[PUBMED]    
4.Krotoski WA, Collins WE. Failure to detect hypnozoites in hepatic tissue containing exoerythrocytic schizonts of Plasmodium knowlesi. Am J Trop Med Hyg 1982;31:854-6.  Back to cited text no. 4
[PUBMED]    
5.Vythilingam I, Noorazian YM, Huat TC, Jiram AI, Yusri YM, Azahari AH, et al. Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasit Vectors 2008;1:26.  Back to cited text no. 5
    
6.Ng OT, Ooi EE, Lee CC, Lee PJ, Ng LC, Pei SW, et al. Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg Infect Dis 2008;14:814-6.  Back to cited text no. 6
    
7.Jongwutiwes S, Buppan P, Kosuvin R, Seethamchai S, Pattanawong U, Sirichaisinthop J, et al. Plasmodium knowlesi malaria in humans and macaques, Thailand. Emerg Infect Dis 2011;17:1799-806.  Back to cited text no. 7
    
8.Vythilingam I, Tan CH, Asmad M, Chan ST, Lee KS, Singh B. Natural transmission of Plasmodium knowlesi to humans by Anopheles latens in Sarawak, Malaysia. Trans R Soc Trop Med Hyg 2006;100:1087-8.  Back to cited text no. 8
    
9.Jiram AI, Vythilingam I, NoorAzian YM, Yusof YM, Azahari AH, Fong MY. Entomologic investigation of Plasmodium knowlesi vectors in Kuala Lipis, Pahang, Malaysia. Malar J 2012;11:213.  Back to cited text no. 9
    
10.Bronner U, Divis PC, Färnert A, Singh B. Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malar J 2009;8:15.  Back to cited text no. 10
    
11.Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 2009;49:852-60.  Back to cited text no. 11
    
12.Pukrittayakamee S, Chantra A, Simpson JA, Vanijanonta S, Clemens R, Looareesuwan S, et al. Therapeutic responses to different antimalarial drugs in vivax malaria. Antimicrob Agents Chemother 2000;44:1680-5.  Back to cited text no. 12
    
13.Mayxay M, Khanthavong M, Lindegårdh N, Keola S, Barends M, Pongvongsa T, et al. Randomized comparison of chloroquine plus sulfadoxine-pyrimethamine versus artesunate plus mefloquine versus artemether-lumefantrine in the treatment of uncomplicated falciparum malaria in the Lao People's Democratic Republic. Clin Infect Dis 2004;39:1139-47.  Back to cited text no. 13
    
14.Dunne MW, Singh N, Shukla M, Valecha N, Bhattacharyya PC, Dev V, et al. A multicenter study of azithromycin, alone and in combination with chloroquine, for the treatment of acute uncomplicated Plasmodium falciparum malaria in India. J Infect Dis 2005;191:1582-8.  Back to cited text no. 14
    
15.Pukrittayakamee S, Imwong M, Looareesuwan S, White NJ. Therapeutic responses to antimalarial and antibacterial drugs in vivax malaria. Acta Trop 2004;89:351-6.  Back to cited text no. 15
    
16.Phan GT, de Vries PJ, Tran BQ, Le HQ, Nguyen NV, Nguyen TV, et al. Artemisinin or chloroquine for blood stage Plasmodium vivax malaria in Vietnam. Trop Med Int Health 2002;7:858-64.  Back to cited text no. 16
    
17.Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: High proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis 2013;56:383-97.  Back to cited text no. 17
    
18.William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, et al. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg Infect Dis 2011;17:1248-55.  Back to cited text no. 18
    
19.Tripathi R, Awasthi A, Dutta GP. Mefloquine resistance reversal action of ketoconazole-A cytochrome P450 inhibitor, against mefloquine-resistant malaria. Parasitology 2005;130:475-9.  Back to cited text no. 19
    
20.Lau YL, Tan LH, Chin LC, Fong MY, Noraishah MA, Rohela M. Plasmodium knowlesi reinfection in human. Emerg Infect Dis 2011;17:1314-5.  Back to cited text no. 20
[PUBMED]    



This article has been cited by
1 Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework
Gael Davidson,Tock H. Chua,Angus Cook,Peter Speldewinde,Philip Weinstein
Malaria Journal. 2019; 18(1)
[Pubmed] | [DOI]
2 Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi
Maria Miguel-Oteo,Adela I. Jiram,Thuy H. Ta-Tang,Marta Lanza,Shamilah Hisam,José M. Rubio
Asian Pacific Journal of Tropical Medicine. 2017; 10(3): 299
[Pubmed] | [DOI]
3 Rapid-Antigen Test Negative Malaria in a Traveler Returning From Thailand, Molecularly Diagnosed asPlasmodium knowlesi
Maria S. Mackroth,Dennis Tappe,Egbert Tannich,Marylyn Addo,Camilla Rothe
Open Forum Infectious Diseases. 2016; 3(1): ofw039
[Pubmed] | [DOI]
4 Severe Plasmodium knowlesi infection with multi-organ failure imported to Germany from Thailand/Myanmar
Michael Seilmaier,Wulf Hartmann,Marcus Beissner,Thomas Fenzl,Cathrine Haller,Wolfgang Guggemos,Jan Hesse,Adinda Harle,Gisela Bretzel,Stefan Sack,Clemens Wendtner,Thomas Löscher,Nicole Berens-Riha
Malaria Journal. 2014; 13(1): 422
[Pubmed] | [DOI]
5 Toxicological attributes of plant chemicals and their biochemical impacts on cholinesterase and protein levels in relation with conventional insecticides against mosquito larvae of Karachi city
Masarrat J. Yousuf,Syed Ishtiaq Anjum,Rabiya Faiz
Toxicological & Environmental Chemistry. 2014; 96(7): 1088
[Pubmed] | [DOI]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Life Cycle
   Epidemiology
   Vectors
    Modes of Transmi...
   Clinical Features
   Management
   Conclusion
    References

 Article Access Statistics
    Viewed2262    
    Printed59    
    Emailed0    
    PDF Downloaded121    
    Comments [Add]    
    Cited by others 5    

Recommend this journal